Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.334
Filtrar
1.
Fluids Barriers CNS ; 21(1): 31, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575991

RESUMO

BACKGROUND: In the choroid plexus and pituitary gland, vasculature is known to have a permeable, fenestrated phenotype which allows for the free passage of molecules in contrast to the blood brain barrier observed in the rest of the CNS. The endothelium of these compartments, along with secretory, neural-lineage cells (choroid epithelium and pituitary endocrine cells) have been studied in detail, but less attention has been given to the perivascular mesenchymal cells of these compartments. METHODS: The Hic1CreERT2 Rosa26LSL-TdTomato mouse model was used in conjunction with a PdgfraH2B-EGFP mouse model to examine mesenchymal cells, which can be subdivided into Pdgfra+ fibroblasts and Pdgfra- pericytes within the choroid plexus (CP) and pituitary gland (PG), by histological, immunofluorescence staining and single-cell RNA-sequencing analyses. RESULTS: We found that both CP and PG possess substantial populations of distinct Hic1+ mesenchymal cells, including an abundance of Pdgfra+ fibroblasts. Within the pituitary, we identified distinct subpopulations of Hic1+ fibroblasts in the glandular anterior pituitary and the neurosecretory posterior pituitary. We also identified multiple distinct markers of CP, PG, and the meningeal mesenchymal compartment, including alkaline phosphatase, indole-n-methyltransferase and CD34. CONCLUSIONS: Novel, distinct subpopulations of mesenchymal cells can be found in permeable vascular interfaces, including the CP, PG, and meninges, and make distinct contributions to both organs through the production of structural proteins, enzymes, transporters, and trophic molecules.


Assuntos
Células-Tronco Mesenquimais , 60598 , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Fibroblastos , Análise de Célula Única , Plexo Corióideo/metabolismo
2.
Neurosurg Rev ; 47(1): 176, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644441

RESUMO

The use of endoscopic third ventriculostomy (ETV) for treatment of pediatric hydrocephalus has higher failure rates in younger patients. Here we investigate the impact of select perioperative variables, specifically gestational age, chronological age, birth weight, and surgical weight, on ETV failure rates. A retrospective review was performed on patients treated with ETV - with or without choroid plexus cauterization (CPC) - from 2010 to 2021 at a large academic center. Analyses included Cox regression for independent predictors and Kaplan-Meier survival curves for time to-event outcomes. In total, 47 patients were treated with ETV; of these, 31 received adjunctive CPC. Overall, 66% of the cohort experienced ETV failure with a median failure of 36 days postoperatively. Patients aged < 6 months at time of surgery experienced 80% failure rate, and those > 6 months at time of surgery experienced a 41% failure rate. Univariate Cox regression analysis showed weight at the time of ETV surgery was significantly inversely associated with ETV failure with a hazard ratio of 0.92 (95% CI 0.82, 0.99). Multivariate analysis redemonstrated the inverse association of weight at time of surgery with ETV failure with hazard ratio of 0.76 (95% CI 0.60, 0.92), and sensitivity analysis showed < 4.9 kg as the optimal cutoff predicting ETV/CPC failure. Neither chronologic age nor gestational age were found to be significantly associated with ETV failure.In this study, younger patients experienced higher ETV failure rates, but multivariate regression found that weight was a more robust predictor of ETV failure than chronologic age or gestational age, with an optimal cutoff of 4.9 kg in our small cohort. Given the limited sample size, further study is needed to elucidate the independent role of weight as a peri-operative variable in determining ETV candidacy in young infants. Previous presentations: Poster Presentation, Congress of Neurological Surgeons.


Assuntos
Hidrocefalia , Terceiro Ventrículo , Ventriculostomia , Humanos , Hidrocefalia/cirurgia , Feminino , Ventriculostomia/métodos , Masculino , Lactente , Terceiro Ventrículo/cirurgia , Estudos Retrospectivos , Pré-Escolar , Criança , Falha de Tratamento , Recém-Nascido , Neuroendoscopia/métodos , Idade Gestacional , Plexo Corióideo/cirurgia
3.
Fluids Barriers CNS ; 21(1): 36, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632611

RESUMO

BACKGROUND: Using in vivo neuroimaging techniques, growing evidence has demonstrated that the choroid plexus (CP) volume is enlarged in patients with several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. However, although animal and postmortem findings suggest that CP abnormalities are likely important pathological mechanisms underlying amyotrophic lateral sclerosis (ALS), the third most common neurodegenerative disease, no available study has been conducted to thoroughly assess CP abnormalities and their clinical relevance in vivo in ALS patients to date. Thus, we aimed to determine whether in vivo CP enlargement may occur in ALS patients. We also aimed to identify the relationships of CP volume with clinical disabilities and blood-CSF barrier (BCSFB) permeability in ALS patients. METHODS: In this retrospective study, based on structural MRI data, CP volume was assessed using a Gaussian mixture model and underwent further manual correction in 155 ALS patients and 105 age- and sex-matched HCs from October 2021 to April 2023. The ALS Functional Rating Scale-Revised (ALSFRS-R) was used to assess clinical disability. The CSF/serum albumin quotient (Qalb) was used to assess BCSFB permeability. Moreover, all the ALS patients completed genetic testing, and according to genetic testing, the ALS patients were further divided into genetic ALS subgroup and sporadic ALS subgroup. RESULTS: We found that compared with HCs, ALS patients had a significantly higher CP volume (p < 0.001). Moreover, compared with HCs, CP volume was significantly increased in both ALS patients with and without known genetic mutations after family-wise error correction (p = 0.006 and p < 0.001, respectively), while there were no significant differences between the two ALS groups. Furthermore, the CP volume was significantly correlated with the ALSFRS-r score (r = -0.226; p = 0.005) and the Qalb (r = 0.479; p < 0.001) in ALS patients. CONCLUSION: Our study first demonstrates CP enlargement in vivo in ALS patients, and continues to suggest an important pathogenetic role for CP abnormalities in ALS. Moreover, assessing CP volume is likely a noninvasive and easy-to-implement approach for screening BCSFB dysfunction in ALS patients.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Animais , Humanos , Plexo Corióideo , Estudos Retrospectivos , Permeabilidade Capilar
4.
Fluids Barriers CNS ; 21(1): 37, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654318

RESUMO

BACKGROUND: Intraventricular hemorrhage (IVH) and associated hydrocephalus are significant complications of intracerebral and subarachnoid hemorrhage. Despite proximity to IVH, the immune cell response at the choroid plexus (ChP) has been relatively understudied. This study employs CX3CR-1GFP mice, which marks multiple immune cell populations, and immunohistochemistry to outline that response. METHODS: This study had four parts all examining male adult CX3CR-1GFP mice. Part 1 examined naïve mice. In part 2, mice received an injection 30 µl of autologous blood into right ventricle and were euthanized at 24 h. In part 3, mice underwent intraventricular injection of saline, iron or peroxiredoxin 2 (Prx-2) and were euthanized at 24 h. In part 4, mice received intraventricular iron injection and were treated with either control or clodronate liposomes and were euthanized at 24 h. All mice underwent magnetic resonance imaging to quantify ventricular volume. The ChP immune cell response was examined by combining analysis of GFP(+) immune cells and immunofluorescence staining. RESULTS: IVH and intraventricular iron or Prx-2 injection in CX3CR-1GFP mice all induced ventriculomegaly and activation of ChP immune cells. There were very marked increases in the numbers of ChP epiplexus macrophages, T lymphocytes and neutrophils. Co-injection of clodronate liposomes with iron reduced the ventriculomegaly which was associated with fewer epiplexus and stromal macrophages but not reduced T lymphocytes and neutrophils. CONCLUSION: There is a marked immune cell response at the ChP in IVH involving epiplexus cells, T lymphocytes and neutrophils. The blood components iron and Prx-2 may play a role in eliciting that response. Reduction of ChP macrophages with clodronate liposomes reduced iron-induced ventriculomegaly suggesting that ChP macrophages may be a promising therapeutic target for managing IVH-induced hydrocephalus.


Assuntos
Plexo Corióideo , Modelos Animais de Doenças , Hidrocefalia , Animais , Plexo Corióideo/imunologia , Hidrocefalia/etiologia , Hidrocefalia/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Hemorragia Cerebral Intraventricular/imunologia , Macrófagos/imunologia , Ferro/metabolismo
5.
Genes (Basel) ; 15(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540444

RESUMO

Epithelial cells comprising the choroid plexus (CP) form a crucial barrier between the blood and the cerebrospinal fluid, thereby assuming a central position in brain homeostasis and signaling. Mounting evidence suggests that the impairment of CP function may be a significant contributor to Alzheimer's disease (AD) pathogenesis. CP function relies on the expression of specific receptors, and the potential involvement of olfactory receptors (ORs) and taste receptors (TASRs) in chemical surveillance within the CP is being investigated. Previous studies have implicated ORs and TASRs in neurodegenerative disorders like AD, although the direct evidence of their expression in the human CP remains to be established. In this study, we conducted a transcriptomic analysis encompassing eleven ORs and TASRs in the CP, comparing samples from healthy age-matched controls to those from patients with AD spanning Braak stages I to VI. Among these receptors, a striking finding emerged-OR2K2 exhibited robust expression, with a statistically significant upregulation noted at Braak stage I. Surprisingly, at the protein level, OR2K2 showed a significant decrease in both Braak stage I and VI. Additionally, we identified CP epithelial cells as the source of OR2K2 expression, where it colocalized with autophagy markers LC3 and p62. We postulate that OR2K2 could be subjected to degradation by autophagy in the early stages of AD, triggering a compensatory mechanism that leads to increased OR2K2 mRNA transcription. This study uncovers a potential role for OR2K2 in AD pathogenesis, offering a novel perspective on the intricate dynamics at play in this neurodegenerative disorder.


Assuntos
Doença de Alzheimer , Receptores Odorantes , Humanos , Doença de Alzheimer/patologia , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Expressão Gênica , Encéfalo/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
6.
7.
J Affect Disord ; 354: 719-724, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521134

RESUMO

BACKGROUND: We investigated volumetric alterations in the bilateral choroid plexus (ChP) and brain ventricles of patients during their first episode of major depressive disorder (MDD) prior to antidepressant treatment. METHODS: Seventy-one first-episode drug-naïve patients with MDD and seventy-four healthy control (HC) subjects were recruited. MRI data were obtained, and bilateral ChP and brain ventricle volumes were evaluated using segmentation, based on the adaptive multiscale and expectation maximization method. One-way multivariate analysis of covariance was used to calculate volumetric differences in the bilateral ChP and brain ventricles between the groups, and partial Pearson correlation analyses were used to investigate the relationship between the volumes of the bilateral ChP and brain ventricles. RESULTS: First-episode drug-naïve patients with MDD showed enlarged volumes of the bilateral ChP, bilateral lateral ventricle (LV), and third ventricle compared with HCs. The ChP volume positively correlated with the LV and third ventricle, but not with the fourth ventricle in patients with MDD, whereas it correlated with all four brain ventricles in HCs. We did not observe significant correlations between bilateral ChP volume and brain ventricles, HAMD scores, or symptom severity. LIMITATIONS: Our study populations differed in age and sex and we did not extensively measure the amount of neuroinflammation in the brain or blood, include a functional assessment, nor evaluate other neural comorbidities or neuropsychiatric conditions. CONCLUSIONS: Our study extends the existing research to suggest that illness-related alterations in ChP volume enlargement in first-episode antidepressant-naïve patients with MDD may serve as a trait measure.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/tratamento farmacológico , Plexo Corióideo/diagnóstico por imagem , Encéfalo , Mapeamento Encefálico , Antidepressivos/uso terapêutico , Imageamento por Ressonância Magnética
9.
Fluids Barriers CNS ; 21(1): 24, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439105

RESUMO

Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) that can present across the age spectrum, highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.


Assuntos
Hidrocefalia , Hipertensão Intracraniana , Humanos , Hidrocefalia/genética , Hemorragia Cerebral , Plexo Corióideo , Hidrodinâmica
10.
Eur Radiol Exp ; 8(1): 33, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409562

RESUMO

We compared choroid plexus (ChP) manual segmentation on non-contrast-enhanced (non-CE) sequences and reference standard CE T1- weighted (T1w) sequences in 61 multiple sclerosis patients prospectively included. ChP was separately segmented on T1w, T2-weighted (T2w) fluid-attenuated inversion-recovery (FLAIR), and CE-T1w sequences. Inter-rater variability assessed on 10 subjects showed high reproducibility between sequences measured by intraclass correlation coefficient (T1w 0.93, FLAIR 0.93, CE-T1w 0.99). CE-T1w showed higher signal-to-noise ratio and contrast-to-noise ratio (CE-T1w 23.77 and 18.49, T1w 13.73 and 7.44, FLAIR 13.09 and 10.77, respectively). Manual segmentation of ChP resulted 3.073 ± 0.563 mL (mean ± standard deviation) on T1w, 3.787 ± 0.679 mL on FLAIR, and 2.984 ± 0.506 mL on CE-T1w images, with an error of 28.02 ± 19.02% for FLAIR and 3.52 ± 12.61% for T1w. FLAIR overestimated ChP volume compared to CE-T1w (p < 0.001). The Dice similarity coefficient of CE-T1w versus T1w and FLAIR was 0.67 ± 0.05 and 0.68 ± 0.05, respectively. Spatial error distribution per slice was calculated after nonlinear coregistration to the standard MNI152 space and showed a heterogeneous profile along the ChP especially near the fornix and the hippocampus. Quantitative analyses suggest T1w as a surrogate of CE-T1w to estimate ChP volume.Relevance statement To estimate the ChP volume, CE-T1w can be replaced by non-CE T1w sequences because the error is acceptable, while FLAIR overestimates the ChP volume. This encourages the development of automatic tools for ChP segmentation, also improving the understanding of the role of the ChP volume in multiple sclerosis, promoting longitudinal studies.Key points • CE-T1w sequences are considered the reference standard for ChP manual segmentation.• FLAIR sequences showed a higher CNR than T1w sequences but overestimated the ChP volume.• Non-CE T1w sequences can be a surrogate of CE-T1w sequences for manual segmentation of ChP.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Reprodutibilidade dos Testes , Plexo Corióideo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Razão Sinal-Ruído
11.
Fluids Barriers CNS ; 21(1): 21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424598

RESUMO

BACKGROUND: The choroid plexus functions as the blood-cerebrospinal fluid (CSF) barrier, plays an important role in CSF production and circulation, and has gained increased attention in light of the recent elucidation of CSF circulation dysfunction in neurodegenerative conditions. However, methods for routinely quantifying choroid plexus volume are suboptimal and require technical improvements and validation. Here, we propose three deep learning models that can segment the choroid plexus from commonly-acquired anatomical MRI data and report performance metrics and changes across the adult lifespan. METHODS: Fully convolutional neural networks were trained from 3D T1-weighted, 3D T2-weighted, and 2D T2-weighted FLAIR MRI using gold-standard manual segmentations in control and neurodegenerative participants across the lifespan (n = 50; age = 21-85 years). Dice coefficients, 95% Hausdorff distances, and area-under-curve (AUCs) were calculated for each model and compared to segmentations from FreeSurfer using two-tailed Wilcoxon tests (significance criteria: p < 0.05 after false discovery rate multiple comparisons correction). Metrics were regressed against lateral ventricular volume using generalized linear models to assess model performance for varying levels of atrophy. Finally, models were applied to an expanded cohort of adult controls (n = 98; age = 21-89 years) to provide an exemplar of choroid plexus volumetry values across the lifespan. RESULTS: Deep learning results yielded Dice coefficient = 0.72, Hausdorff distance = 1.97 mm, AUC = 0.87 for T1-weighted MRI, Dice coefficient = 0.72, Hausdorff distance = 2.22 mm, AUC = 0.87 for T2-weighted MRI, and Dice coefficient = 0.74, Hausdorff distance = 1.69 mm, AUC = 0.87 for T2-weighted FLAIR MRI; values did not differ significantly between MRI sequences and were statistically improved compared to current commercially-available algorithms (p < 0.001). The intraclass coefficients were 0.95, 0.95, and 0.96 between T1-weighted and T2-weighted FLAIR, T1-weighted and T2-weighted, and T2-weighted and T2-weighted FLAIR models, respectively. Mean lateral ventricle choroid plexus volume across all participants was 3.20 ± 1.4 cm3; a significant, positive relationship (R2 = 0.54-0.60) was observed between participant age and choroid plexus volume for all MRI sequences (p < 0.001). CONCLUSIONS: Findings support comparable performance in choroid plexus delineation between standard, clinically available, non-contrasted anatomical MRI sequences. The software embedding the evaluated models is freely available online and should provide a useful tool for the growing number of studies that desire to quantitatively evaluate choroid plexus structure and function ( https://github.com/hettk/chp_seg ).


Assuntos
Aprendizado Profundo , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Processamento de Imagem Assistida por Computador/métodos , Longevidade , Plexo Corióideo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
12.
Neurol Neuroimmunol Neuroinflamm ; 11(2): e200205, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350048

RESUMO

BACKGROUND AND OBJECTIVES: Chronic inflammation may contribute to cognitive dysfunction and fatigue in patients with multiple sclerosis (MS). Paramagnetic rim lesions (PRLs) and choroid plexus (CP) enlargement have been proposed as markers of chronic inflammation in MS being associated with a more severe disease course. However, their relation with cognitive impairment and fatigue has not been fully explored yet. Here, we investigated the contribution of PRL number and volume and CP enlargement to cognitive impairment and fatigue in patients with MS. METHODS: Brain 3T MRI, neurologic evaluation, and neuropsychological assessment, including the Brief Repeatable Battery of Neuropsychological Tests and Modified Fatigue Impact Scale, were obtained from 129 patients with MS and 73 age-matched and sex-matched healthy controls (HC). PRLs were identified on phase images of susceptibility-weighted imaging, whereas CP volume was quantified using a fully automatic method on brain three-dimensional T1-weighted and fluid-attenuated inversion recovery MRI sequences. Predictors of cognitive impairment and fatigue were identified using random forest. RESULTS: Thirty-six (27.9%) patients with MS were cognitively impaired, and 31/113 (27.4%) patients had fatigue. Fifty-nine (45.7%) patients with MS had ≥1 PRLs (median = 0, interquartile range = 0;2). Compared with HC, patients with MS showed significantly higher T2-hyperintense white matter lesion (WM) volume; lower normalized brain, thalamic, hippocampal, caudate, cortical, and WM volumes; and higher normalized CP volume (p from <0.001 to 0.040). The predictors of cognitive impairment (relative importance) (out-of-bag area under the curve [OOB-AUC] = 0.707) were normalized brain volume (100%), normalized caudate volume (89.1%), normalized CP volume (80.3%), normalized cortical volume (70.3%), number (67.3%) and volume (66.7%) of PRLs, and T2-hyperintense WM lesion volume (64.0%). Normalized CP volume was the only predictor of the presence of fatigue (OOB-AUC = 0.563). DISCUSSION: Chronic inflammation, with higher number and volume of PRLs and enlarged CP, may contribute to cognitive impairment in MS in addition to gray matter atrophy. The contribution of enlarged CP in explaining fatigue supports the relevance of immune-related processes in determining this manifestation independently of disease severity. PRLs and CP enlargement may contribute to the pathophysiology of cognitive impairment and fatigue in MS, and they may represent clinically relevant therapeutic targets to limit the impact of these clinical manifestations in MS.


Assuntos
Disfunção Cognitiva , Esclerose Múltipla , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Plexo Corióideo/diagnóstico por imagem , Plexo Corióideo/patologia , Disfunção Cognitiva/etiologia , Cognição , Inflamação/complicações
13.
Mult Scler ; 30(4-5): 496-504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318807

RESUMO

BACKGROUND AND OBJECTIVE: We explored dynamic changes in the choroid plexus (CP) in patients with relapsing-remitting multiple sclerosis (RRMS) and assessed its relationship with chronic lesion expansion and atrophy in various brain compartments. METHODS: Fifty-seven RRMS patients were annually assessed for a minimum of 48 months with 3D FLAIR, pre- and post-contrast 3D T1 and diffusion-weighted magnetic resonance imaging (MRI). The CP was manually segmented at baseline and last follow-up. RESULTS: The volume of CP significantly increased by 1.4% annually. However, the extent of CP enlargement varied considerably among individuals (ranging from -3.6 to 150.8 mm3 or -0.2% to 6.3%). The magnitude of CP enlargement significantly correlated with central (r = 0.70, p < 0.001) and total brain atrophy (r = -0.57, p < 0.001), white (r = -0.61, p < 0.001) and deep grey matter atrophy (r = -0.60, p < 0.001). Progressive CP enlargement was significantly associated with the volume and extent of chronic lesion expansion (r = 0.60, p < 0.001), but not with the number or volume of new lesions. CONCLUSION: This study provides evidence of progressive CP enlargement in patients with RRMS. Our findings also demonstrate that enlargement of the CP volume is linked to the expansion of chronic lesions and neurodegeneration of periventricular white and grey matter in RRMS patients.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Plexo Corióideo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Atrofia/patologia , Esclerose Múltipla/patologia
14.
Pflugers Arch ; 476(4): 467-478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383821

RESUMO

The cerebrospinal fluid (CSF) fills the brain ventricles and the subarachnoid space surrounding the brain and spinal cord. The fluid compartment of the brain ventricles communicates with the interstitial fluid of the brain across the ependyma. In comparison to blood, the CSF contains very little protein to buffer acid-base challenges. Nevertheless, the CSF responds efficiently to changes in systemic pH by mechanisms that are dependent on the CO2/HCO3- buffer system. This is evident from early studies showing that the CSF secretion is sensitive to inhibitors of acid/base transporters and carbonic anhydrase. The CSF is primarily generated by the choroid plexus, which is a well-vascularized structure arising from the pial lining of the brain ventricles. The epithelial cells of the choroid plexus host a range of acid/base transporters, many of which participate in CSF secretion and most likely contribute to the transport of acid/base equivalents into the ventricles. This review describes the current understanding of the molecular mechanisms in choroid plexus acid/base regulation and the possible role in CSF pH regulation.


Assuntos
Encéfalo , Plexo Corióideo , Plexo Corióideo/metabolismo , Encéfalo/metabolismo , Transporte Biológico , Medula Espinal , Concentração de Íons de Hidrogênio
15.
Yi Chuan ; 46(2): 109-125, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340002

RESUMO

The choroid plexus is composed of epithelial cells situated on the basal layer. The tight junctions between adjacent choroid plexus epithelial cells establish the blood-cerebrospinal fluid barrier. This barrier, in conjunction with the blood-brain barrier, is crucial for the homeostasis of the brain microenvironment. The choroid plexus epithelium secretes cerebrospinal fluid, growth factors, neuropeptides, and lipids into the ventricles and also serves as a gateway for immune cells to enter the brain. The pathophysiology of aging and neurodegenerative diseases remains largely enigmatic, with an increasing body of research linking the choroid plexus to the etiology of these age-related disorders. In this review, we summarize the known relationship between the choroid plexus epithelium and age-related diseases, aiming to provide new therapeutic clues for these disorders.


Assuntos
Barreira Hematoencefálica , Plexo Corióideo , Barreira Hematoencefálica/fisiologia , Encéfalo , Plexo Corióideo/metabolismo , Células Epiteliais/metabolismo , Humanos
16.
Neurochem Res ; 49(5): 1123-1136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38337135

RESUMO

The brain's ventricles are filled with a colorless fluid known as cerebrospinal fluid (CSF). When there is an excessive accumulation of CSF in the ventricles, it can result in high intracranial pressure, ventricular enlargement, and compression of the surrounding brain tissue, leading to potential damage. This condition is referred to as hydrocephalus. Hydrocephalus is classified into two categories: congenital and acquired. Congenital hydrocephalus (CH) poses significant challenges for affected children and their families, particularly in resource-poor countries. Recognizing the psychological and economic impacts is crucial for developing interventions and support systems that can help alleviate the distress and burden faced by these families. As our understanding of CSF production and circulation improves, we are gaining clearer insights into the causes of CH. In this article, we will summarize the current knowledge regarding CSF circulation pathways and the underlying causes of CH. The main causes of CH include abnormalities in the FoxJ1 pathway of ventricular cilia, dysfunctions in the choroid plexus transporter Na+-K+-2Cl- contransporter isoform 1, developmental abnormalities in the cerebral cortex, and structural abnormalities within the brain. Understanding the causes of CH is indeed crucial for advancing research and developing effective treatment strategies. In this review, we will summarize the findings from existing studies on the causes of CH and propose potential research directions to further our understanding of this condition.


Assuntos
Hidrocefalia , Criança , Humanos , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/patologia , Encéfalo/patologia , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Cabeça , Líquido Cefalorraquidiano
17.
Neurobiol Dis ; 192: 106416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272141

RESUMO

BACKGROUND: The dysregulation of the gut-brain axis in chronic inflammatory bowel diseases can cause neuro-psychological disturbances, but the underlying mechanisms are still not fully understood. The choroid plexus (CP) maintains brain homeostasis and nourishment through the secretion and clearance of cerebrospinal fluid. Recent research has demonstrated the existence of a CP vascular barrier in mice which is modulated during intestinal inflammation. This study investigates possible correlations between CP modifications and inflammatory activity in patients with Crohn's disease (CD). METHODS: In this prospective study, 17 patients with CD underwent concomitant abdominal and brain 3 T MRI. The volume and permeability of CP were compared with levels of C-reactive protein (CRP), fecal calprotectin (FC), sMARIA and SES-CD scores. RESULTS: The CP volume was negatively correlated with CRP levels (R = -0.643, p-value = 0.024) and FC (R = -0.571, p-value = 0.050). DCE metrics normalized by CP volume were positively correlated with CRP (K-trans: R = 0.587, p-value = 0.045; Vp: R = 0.706, p-value = 0.010; T1: R = 0.699, p-value = 0.011), and FC (Vp: R = 0.606, p-value = 0.037). CONCLUSIONS: Inflammatory activity in patients with CD is associated with changes in CP volume and permeability, thus supporting the hypothesis that intestinal inflammation could affect the brain through the modulation of CP vascular barrier also in humans.


Assuntos
Doença de Crohn , Humanos , Animais , Camundongos , Doença de Crohn/diagnóstico por imagem , Doença de Crohn/metabolismo , Plexo Corióideo/diagnóstico por imagem , Plexo Corióideo/metabolismo , Estudos Prospectivos , Eixo Encéfalo-Intestino , Biomarcadores/metabolismo , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Complexo Antígeno L1 Leucocitário/metabolismo , Índice de Gravidade de Doença , Inflamação/diagnóstico por imagem , Permeabilidade
18.
J Neurol Sci ; 457: 122884, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237367

RESUMO

OBJECTIVE: To evaluate choroid plexus (CP) volume as a biomarker for predicting clinical disability and retinal layer atrophy in relapsing remitting multiple sclerosis (RRMS). METHODS: Ninety-five RRMS patients and 26 healthy controls (HCs) underwent 3 T whole brain MRI, expanded disability status scale (EDSS) and optical coherence tomography (OCT). Fully automated intra-retinal segmentation was performed to obtain the volumes of the retinal nerve fiber layer (RNFL), combined ganglion cell layer -inner plexiform layer (GCIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), retinal pigment epithelium (RPE), total macular volume (TMV) and papillomacular bundle (PMB). Automated segmentation of the CP within the lateral ventricles was performed and the choroid plexus volume (CPV) was normalized by total intracranial volume (TIV). Linear regression analysis and generalized estimating equation (GEE) models were applied to evaluate relationships between nCPV and EDSS, T2 lesion volume, disease duration, and retinal layer volumes, followed by Bonferroni correction analysis for multiple comparisons. RESULTS: RRMS patients had larger tChPV compared to HCs (p < 0.001). After Bonferroni correction, there was a significant positive correlation between tChPV and EDSS (r2 = 0.25, p = 0.0002), disease duration (r2 = 0.30, p = 0.01), and T2 lesion volume (r2 = 0.39, p = 0.0000). A robust negative correlation was found between tChPV and RNFL (p < 0.001), GCIPL (p = 0.003), TMV (p = 0.0185), PMB (p < 0.0001), G (p = 0.04), T(p = 0.0001). CONCLUSIONS: Our findings support the association of tChPV with disability and altered retinal integrity in RRMS.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla Recidivante-Remitente/complicações , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Células Ganglionares da Retina/patologia , Esclerose Múltipla/patologia , Plexo Corióideo/diagnóstico por imagem , Retina/diagnóstico por imagem , Retina/patologia , Tomografia de Coerência Óptica/métodos , Atrofia/patologia
19.
Fluids Barriers CNS ; 21(1): 9, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268040

RESUMO

The Hindbrain Choroid Plexus is a complex, cerebrospinal fluid-secreting tissue that projects into the 4th vertebrate brain ventricle. Despite its irreplaceability in the development and homeostasis of the entire central nervous system, the research of Hindbrain Choroid Plexus and other Choroid Plexuses has been neglected by neuroscientists for decades. One of the obstacles is the lack of tools that describe the complex shape of the Hindbrain Choroid Plexus in the context of brain ventricles. Here we introduce an effective tool, termed ChOP-CT, for the noninvasive, X-ray micro-computed tomography-based, three-dimensional visualization and subsequent quantitative spatial morphological analysis of developing mouse Hindbrain Choroid Plexus. ChOP-CT can reliably quantify Hindbrain Choroid Plexus volume, surface area, length, outgrowth angle, the proportion of the ventricular space occupied, asymmetries and general shape alterations in mouse embryos from embryonic day 13.5 onwards. We provide evidence that ChOP-CT is suitable for the unbiased evaluation and detection of the Hindbrain Choroid Plexus alterations within various mutant embryos. We believe, that thanks to its versatility, quantitative nature and the possibility of automation, ChOP-CT will facilitate the analysis of the Hindbrain Choroid Plexus in the mouse models. This will ultimately accelerate the screening of the candidate genes and mechanisms involved in the onset of various Hindbrain Choroid Plexus-related diseases.


Assuntos
Ventrículos Cerebrais , Plexo Corióideo , Animais , Camundongos , Plexo Corióideo/diagnóstico por imagem , Microtomografia por Raio-X , Rombencéfalo/diagnóstico por imagem , Encéfalo
20.
Brain Behav Immun ; 117: 255-269, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280534

RESUMO

The choroid plexus (ChP) in the brain ventricles has a major influence on brain homeostasis. In this study, we aimed to determine whether the circadian clock located in ChP is affected by chronodisruption caused by misalignment with the external light/dark cycle and/or inflammation. Adult mPer2Luc mice were maintained in the LD12:12 cycle or exposed to one of two models of chronic chronodisruption - constant light for 22-25 weeks (cLL) or 6-hour phase advances of the LD12:12 cycle repeated weekly for 12 weeks (cLD-shifts). Locomotor activity was monitored before the 4th ventricle ChP and suprachiasmatic nuclei (SCN) explants were recorded in real time for PER2-driven population and single-cell bioluminescence rhythms. In addition, plasma immune marker concentrations and gene expression in ChP, prefrontal cortex, hippocampus and cerebellum were analyzed. cLL dampened the SCN clock but did not shorten the inactivity interval (sleep). cLD-shifts had no effect on the SCN clock, but transiently affected sleep duration and fragmentation. Both chronodisruption protocols dampened the ChP clock. Although immune markers were elevated in plasma and hippocampus, levels in ChP were unaffected, and unlike the liver clock, the ChP clock was resistant to lipopolysaccharide treatment. Importantly, both chronodisruption protocols reduced glucocorticoid signaling in ChP. The data demonstrate the high resistance of the ChP clock to inflammation, highlighting its role in protecting the brain from neuroinflammation, and on the other hand its high sensitivity to chronodisruption. Our results provide a novel link between human lifestyle-induced chronodisruption and the impairment of ChP-dependent brain homeostasis.


Assuntos
Relógios Circadianos , Leucemia Linfocítica Crônica de Células B , Humanos , Camundongos , Animais , Ritmo Circadiano/fisiologia , Plexo Corióideo/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...